RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values

Retaining wall details

- Stem type: Propped cantilever
- Stem height: $h_{\text{stem}} = 5500 \text{ mm}$
- Prop height: $h_{\text{prop}} = 4500 \text{ mm}$
- Stem thickness: $t_{\text{stem}} = 500 \text{ mm}$
- Angle to rear face of stem: $\alpha = 90 \text{ deg}$
- Stem density: $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
- Toe length: $l_{\text{toe}} = 1000 \text{ mm}$
- Heel length: $l_{\text{heel}} = 3000 \text{ mm}$
- Base thickness: $t_{\text{base}} = 500 \text{ mm}$
- Key position: $p_{\text{key}} = 4150 \text{ mm}$
- Key depth: $d_{\text{key}} = 500 \text{ mm}$
- Key thickness: $t_{\text{key}} = 350 \text{ mm}$
- Base density: $\gamma_{\text{base}} = 25 \text{ kN/m}^3$
- Height of retained soil: $h_{\text{ref}} = 5000 \text{ mm}$
- Angle of soil surface: $\beta = 0 \text{ deg}$
- Depth of cover: $d_{\text{cover}} = 500 \text{ mm}$
- Height of water: $h_{\text{water}} = 150 \text{ mm}$
- Water density: $\gamma_{w} = 9.8 \text{ kN/m}^3$
Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009)

Retained soil properties

Soil type:
Very loose gravel

Moist density;
\(\gamma_{mr} = 16 \text{ kN/m}^3 \)

Saturated density;
\(\gamma_{sr} = 20 \text{ kN/m}^3 \)
Calculate retaining wall geometry

Base length;
\[h_{\text{base}} = l_{\text{toe}} + t_{\text{stem}} + h_{\text{heel}} = 4500 \text{ mm} \]

Base height;
\[h_{\text{base}} = t_{\text{base}} + d_{\text{key}} = 1000 \text{ mm} \]

Saturated soil height;
\[h_{\text{sat}} = h_{\text{water}} + d_{\text{cover}} = 650 \text{ mm} \]

Moist soil height;
\[h_{\text{moist}} = h_{\text{ret}} - h_{\text{water}} = 4850 \text{ mm} \]

Length of surcharge load;
\[l_{\text{sur}} = h_{\text{heel}} = 3000 \text{ mm} \]

Effective height of wall;
\[h_{\text{eff}} = h_{\text{base}} + d_{\text{cover}} + h_{\text{ret}} = 6500 \text{ mm} \]

Area of wall stem;
\[A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 2.75 \text{ m}^2 \]

Area of wall base;
\[A_{\text{base}} = h_{\text{base}} \times t_{\text{base}} + d_{\text{key}} \times t_{\text{key}} = 2.425 \text{ m}^2 \]

Area of saturated soil;
\[A_{\text{sat}} = h_{\text{sat}} \times t_{\text{heel}} = 1.95 \text{ m}^2 \]

Area of water;
\[A_{\text{water}} = h_{\text{water}} \times t_{\text{heel}} = 1.95 \text{ m}^2 \]

Area of moist soil;
\[A_{\text{moist}} = h_{\text{moist}} \times t_{\text{heel}} = 14.55 \text{ m}^2 \]

Area of base soil;
\[A_{\text{pass}} = d_{\text{cover}} \times l_{\text{toe}} = 0.5 \text{ m}^2 \]
- Distance to horizontal component;
 \[x_{\text{pass} _ h} = \frac{(d_{\text{cover}} + h_{\text{base}})}{3} - d_{\text{key}} = 0 \text{ mm} \]
- Distance to vertical component;
 \[A_{\text{exc}} = h_{\text{pass}} \times l_{\text{toe}} = 9.5 \text{ m}^2 \]
- Distance to horizontal component;
 \[x_{\text{exc} _ h} = h_{\text{pass}} + h_{\text{base}} / 3 - d_{\text{key}} = 0 \text{ mm} \]

Partial factors on actions - Table A.3 - Combination 1

Permanent unfavourable action;	\[\gamma_{\text{f}} = 1.35 \]
Permanent favourable action;	\[\gamma_{\text{f}} = 1.00 \]
Variable unfavourable action;	\[\gamma_{\text{r}} = 1.50 \]
Variable favourable action;	\[\gamma_{\text{r}} = 0.00 \]

Partial factors for soil parameters – Table A.4 - Combination 1

Angle of shearing resistance;	\[\gamma_{\phi} = 1.00 \]
Effective cohesion;	\[\gamma_{c} = 1.00 \]
Weight density;	\[\gamma_{\gamma} = 1.00 \]

Retained soil properties

| Design effective shear resistance angle; | \[\phi_{1,a} = \text{atan}(\tan(\phi_{1,k}) / \gamma_{\phi}) = 26 \text{ deg} \] |
| Design wall friction angle; | \[\delta_{1,a} = \text{atan}(\tan(\delta_{1,k}) / \gamma_{\phi}) = 13 \text{ deg} \] |

Base soil properties

Design effective shear resistance angle;	\[\phi_{b,a} = \text{atan}(\tan(\phi_{b,k}) / \gamma_{\phi}) = 18 \text{ deg} \]
Design wall friction angle;	\[\delta_{b,a} = \text{atan}(\tan(\delta_{b,k}) / \gamma_{\phi}) = 9 \text{ deg} \]
Design base friction angle;	\[\delta_{bb,a} = \text{atan}(\tan(\delta_{bb,k}) / \gamma_{\phi}) = 12 \text{ deg} \]
Design effective cohesion;	\[c_{b,a} = c_{bb,k} / \gamma_{c} = 25 \text{ kN/m}^2 \]
Design adhesion;	\[a_{b,a} = a_{bb,k} / \gamma_{c} = 20 \text{ kN/m}^2 \]

Using Coulomb theory

| Active pressure coefficient; | \[K_{\text{A}} = \sin(\alpha + \phi_{1,a})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{1,a}) \times [1 + \sqrt{\sin(\phi_{1,a} + \delta_{1,a}) \times \sin(\phi_{1,a} - \beta) / (\sin(\alpha - \delta_{1,a}) \times \sin(\alpha + \beta))^2}] = 0.353 \] |
| Passive pressure coefficient; | \[K_{\text{P}} = \sin(90 - \phi_{1,a})^2 / (\sin(90 + \delta_{1,a}) \times [1 - \sqrt{\sin(\phi_{1,a} + \delta_{1,a}) \times \sin(\phi_{1,a}) / (\sin(90 + \delta_{1,a}))}]^2 = 2.359 \] |

Bearing pressure check

Vertical forces on wall

Wall stem;	\[F_{\text{stem}} = \gamma_{\text{f}} \times A_{\text{stem}} \times \gamma_{\text{stem}} = 92.8 \text{ kN/m} \]
Wall base;	\[F_{\text{base}} = \gamma_{\text{f}} \times A_{\text{base}} \times \gamma_{\text{base}} = 81.8 \text{ kN/m} \]
Surcharge load;	\[F_{\text{sur} _ v} = \gamma_{\text{f}} \times \text{Surcharge}_{\text{Q}} \times l_{\text{heel}} = 225 \text{ kN/m} \]
Saturated retained soil;	\[F_{\text{sat} _ v} = \gamma_{\text{f}} \times A_{\text{sat}} \times \gamma_{\text{sat}} = 26.8 \text{ kN/m} \]
Water;	\[F_{\text{water} _ v} = \gamma_{\text{f}} \times A_{\text{water}} \times \gamma_{w} = 25.8 \text{ kN/m} \]
Moist retained soil;	\[F_{\text{moist} _ v} = \gamma_{\text{f}} \times A_{\text{moist}} \times \gamma_{\text{mr}} = 314.3 \text{ kN/m} \]
Base soil;	\[F_{\text{pass} _ v} = \gamma_{\text{f}} \times A_{\text{pass}} \times \gamma_{\text{mb}} = 12.2 \text{ kN/m} \]
Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009)

Section: Civil & Geotechnical Engineering
Date: 23/05/2013
Chk’d by: -
App’d by: -

Total:

\[F_{\text{total_v}} = F_{\text{stem}} + F_{\text{base}} + F_{\text{sat_v}} + F_{\text{moist_v}} + F_{\text{pass_v}} + F_{\text{water_v}} + F_{\text{sur_v}} = 778.7 \text{ kNm} \]

Horizontal forces on wall

- **Surcharge load:**
 \[F_{\text{sur}} = K_A \times \cos(\delta_{b,d}) \times \gamma_Q \times \text{Surcharge}_{Q} \times h_{\text{eff}} = 167.8 \text{ kN/m} \]

- **Saturated retained soil:**
 \[F_{\text{sat}} = \gamma_Q \times K_A \times \cos(\delta_{b,d}) \times (\gamma_{w} - \gamma_{w}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 = 6.4 \text{ kN/m} \]

- **Water:**
 \[F_{\text{water}} = \gamma_Q \times \gamma_{w} \times (h_{\text{water}} + d_{\text{cover}} + h_{\text{base}})^2 / 2 = 18 \text{ kN/m} \]

- **Moist retained soil:**
 \[F_{\text{moist}} = \gamma_Q \times K_A \times \cos(\delta_{b,d}) \times \gamma_{w} \times ((h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})) = 146.9 \text{ kN/m} \]

- **Total:**
 \[F_{\text{total}} = F_{\text{sat}} + F_{\text{moist}} + F_{\text{water}} + F_{\text{sur}} = 339.2 \text{ kN/m} \]

Moments on wall

- **Wall stem:**
 \[M_{\text{stem}} = F_{\text{stem}} \times x_{\text{stem}} = 116 \text{ kNm/m} \]

- **Wall base:**
 \[M_{\text{base}} = F_{\text{base}} \times x_{\text{base}} = 196.4 \text{ kNm/m} \]

- **Surcharge load:**
 \[M_{\text{sur}} = F_{\text{sur}} \times x_{\text{sur}} \times h_{\text{sur}} = 213.6 \text{ kNm/m} \]

- **Saturated load:**
 \[M_{\text{sat}} = F_{\text{sat}} \times x_{\text{sat}} \times h_{\text{sat}} = 80.2 \text{ kNm/m} \]

- **Water:**
 \[M_{\text{water}} = F_{\text{water}} \times x_{\text{water}} \times h_{\text{water}} = 76.6 \text{ kNm/m} \]

- **Moist retained soil:**
 \[M_{\text{moist}} = F_{\text{moist}} \times x_{\text{moist}} \times h_{\text{moist}} = 681.6 \text{ kNm/m} \]

- **Base soil:**
 \[M_{\text{pass}} = F_{\text{pass}} \times x_{\text{pass}} = 6.1 \text{ kNm/m} \]

- **Total:**
 \[M_{\text{total}} = M_{\text{stem}} + M_{\text{base}} + M_{\text{sat}} + M_{\text{moist}} + M_{\text{pass}} + M_{\text{water}} + M_{\text{sur}} = 1370.5 \text{ kNm/m} \]

Check bearing pressure

- **Maximum friction force:**
 \[F_{\text{friction_max}} = F_{\text{total}} \times \tan(\delta_{bb,d}) = 165.5 \text{ kN/m} \]

- **Maximum base soil resistance:**
 \[F_{\text{pass_max}} = \gamma_{Q} \times K_p \times \cos(\delta_{b,d}) \times \gamma_{mb} \times (d_{\text{cover}} + h_{\text{base}})^2 / 2 = 47.2 \text{ kN/m} \]

- **Base soil resistance:**
 \[F_{\text{pass}} = \min(\max(M_{\text{total}} + F_{\text{total}} \times (h_{\text{prop}} + t_{\text{base}}) + F_{\text{friction_max}} \times (h_{\text{prop}} + t_{\text{base}}) - F_{\text{total}} \times h_{\text{base}} / 2 / (h_{\text{pass}} - h_{\text{prop}} - t_{\text{base}}), 0 \text{ kN/m}), F_{\text{pass}} = 0 \text{ kN/m} \]

- **Propping force:**
 \[F_{\text{prop}} = \min(F_{\text{total}} \times t_{\text{base}} / 2 - M_{\text{total}} / (h_{\text{prop}} + t_{\text{base}}), F_{\text{total}} = 76.3 \text{ kNm/m} \]

- **Friction force:**
 \[F_{\text{friction}} = F_{\text{total}} \times F_{\text{pass}} \times F_{\text{prop}} = 262.8 \text{ kNm/m} \]

- **Moment from propping force:**
 \[M_{\text{prop}} = F_{\text{prop}} \times (h_{\text{prop}} + t_{\text{base}}) = 381.7 \text{ kNm/m} \]

- **Distance to reaction:**
 \[x = (M_{\text{total}} + M_{\text{prop}}) / F_{\text{total}} = 2250 \text{ mm} \]

- **Eccentricity of reaction:**
 \[e = x - h_{\text{base}} / 2 = 0 \text{ mm} \]

- **Loaded length of base:**
 \[l_{\text{load}} = h_{\text{base}} = 4500 \text{ mm} \]
Partial factors on actions - Table A.3 - Combination 2

Permanent unfavourable action; \(\gamma_P = 1.00 \)
Permanent favourable action; \(\gamma_{Fr} = 1.00 \)
Variable unfavourable action; \(\gamma_P = 1.30 \)
Variable favourable action; \(\gamma_{Fr} = 0.00 \)

Partial factors for soil parameters – Table A.4 - Combination 2

Angle of shearing resistance; \(\gamma_{\phi} = 1.25 \)
Effective cohesion; \(\gamma_c = 1.25 \)
Weight density; \(\gamma_t = 1.00 \)

Retained soil properties
Design effective shear resistance angle; \(\phi'_{r,d} = \tan(\tan(\phi_{r,k}) / \gamma_{\phi}) = 21.3 \) deg
Design wall friction angle; \(\delta_{r,d} = \tan(\tan(\delta_{r,k}) / \gamma_t) = 10.5 \) deg

Base soil properties
Design effective shear resistance angle; \(\phi_{b,d} = \tan(\tan(\phi_{b,k}) / \gamma_c) = 14.6 \) deg
Design wall friction angle; \(\delta_{b,d} = \tan(\tan(\delta_{b,k}) / \gamma_t) = 7.2 \) deg
Design base friction angle; \(\delta_{bb,d} = \tan(\tan(\delta_{bb,k}) / \gamma_t) = 9.7 \) deg
Design effective cohesion; \(c'_{b,d} = c'_{b,k} / \gamma_c = 20 \) kN/m²
Design adhesion; \(a_{b,d} = a_{b,k} / \gamma_c = 16 \) kN/m²

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
Using Coulomb theory

Active pressure coefficient;
\[K_A = \sin(\alpha + \psi_{r.d})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r.d}) \times [1 + \sqrt[3]{\sin(\psi_{r.d} + \delta_{r.d}) \times \sin(\psi_{r.d} - \beta) / \sin(\alpha - \delta_{r.d}) \times \sin(\alpha + \beta)^2}]) = 0.425 \]

Passive pressure coefficient;
\[K_p = \sin(90 - \phi_{b.d})^2 / (\sin(90 + \delta_{b.d}) \times [1 + \sqrt[3]{\sin(\phi_{b.d} + \delta_{b.d}) \times \sin(\phi_{b.d} - \beta) / \sin(90 + \delta_{b.d})})^2] = 1.965 \]

Bearing pressure check

Vertical forces on wall

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall stem</td>
<td>(F_{stem} = \gamma_G \times A_{stem} \times \gamma_{stem} = 68.8 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Wall base</td>
<td>(F_{base} = \gamma_G \times A_{base} \times \gamma_{base} = 60.6 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Surcharge load</td>
<td>(F_{sur_v} = \gamma_G \times \text{Surcharge}{Q} \times k{heel} = 195 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Saturated retained soil</td>
<td>(F_{sat_v} = \gamma_G \times A_{sat} \times (\gamma_r + \gamma_w) = 19.9 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>(F_{water_v} = \gamma_G \times \gamma_{water} \times \gamma_w = 19.1 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Moist retained soil</td>
<td>(F_{moist_v} = \gamma_G \times A_{moist} \times \gamma_{mr} = 232.8 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Base soil</td>
<td>(F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_{mb} = 9 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(F_{total_v} = F_{stem} + F_{base} + F_{sat_v} + F_{moist_v} + F_{pass_v} + F_{water_v} + F_{sur_v} = 605.2 \text{kN/m})</td>
<td></td>
</tr>
</tbody>
</table>

Horizontal forces on wall

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surcharge load</td>
<td>(F_{sur_h} = K_A \times \cos(\delta_{r.d}) \times \gamma_G \times \text{Surcharge}{Q} \times h{eff} = 176.5 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Saturated retained soil</td>
<td>(F_{sat_h} = \gamma_G \times K_A \times \cos(\delta_{r.d}) \times (\gamma_r + \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 13.4 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>(F_{water_h} = \gamma_G \times \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 132.1 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Moist retained soil</td>
<td>(F_{moist_h} = \gamma_G \times K_A \times \cos(\delta_{r.d}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base}) = 327.8 \text{kN/m})</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(F_{total_h} = F_{sat_h} + F_{moist_h} + F_{water_h} + F_{sur_h} = 327.8 \text{kN/m})</td>
<td></td>
</tr>
</tbody>
</table>

Moments on wall

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall stem</td>
<td>(M_{stem} = F_{stem} \times x_{stem} = 85.9 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Wall base</td>
<td>(M_{base} = F_{base} \times x_{base} = 145.5 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Surcharge load</td>
<td>(M_{sur} = F_{sur_v} \times x_{sur_v} + F_{sur_h} \times x_{sur_h} = 99.5 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Saturated retained soil</td>
<td>(M_{sat} = F_{sat_v} \times x_{sat_v} + F_{sat_h} \times x_{sat_h} = 59.3 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>(M_{water} = F_{water_v} \times x_{water_v} + F_{water_h} \times x_{water_h} = 56.7 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Moist retained soil</td>
<td>(M_{moist} = F_{moist_v} \times x_{moist_v} + F_{moist_h} \times x_{moist_h} = 463.5 \text{kNm/m})</td>
<td></td>
</tr>
<tr>
<td>Base soil</td>
<td>(M_{pass} = F_{pass_v} \times x_{pass_v} = 4.5 \text{kNm/m})</td>
<td></td>
</tr>
</tbody>
</table>
Check bearing pressure

Maximum friction force;
\[F_{\text{friction max}} = F_{\text{total v}} \times \tan(\delta_{b.d}) = 102.9 \text{kN/m} \]

Maximum base soil resistance;
\[F_{\text{pass h max}} = \frac{\gamma \text{friction} \times K_d \times \cos(\delta_{b.d}) \times \gamma_{\text{mb}} \times (d_{\text{cover}} + h_{\text{base}})^2}{2} = 39.5 \text{kN/m} \]

Base soil resistance;
\[F_{\text{pass h}} = \min((M_{\text{total}} + F_{\text{total h}}) \times (\Delta_{\text{prop}} + t_{\text{base}}) + F_{\text{friction max}} \times (h_{\text{prop}} + t_{\text{base}}) - F_{\text{total v}} \times t_{\text{base}}) / 2) / (x_{\text{pass h}} - h_{\text{prop}} - t_{\text{base}}), 0 \text{kN/m}), F_{\text{pass h max}} = 0 \text{kN/m} \]

Propping force;
\[F_{\text{prop stem}} = \min((F_{\text{total v}} \times t_{\text{base}} / 2 - M_{\text{total}}) / (\Delta_{\text{prop}} + t_{\text{base})), F_{\text{total h}}) = 89.3 \text{kN/m} \]

Friction force;
\[F_{\text{friction}} = F_{\text{total h}} - F_{\text{pass h}} - F_{\text{prop stem}} = 238.5 \text{kN/m} \]

Moment from propping force;
\[M_{\text{prop}} = F_{\text{prop stem}} \times (\Delta_{\text{prop}} + t_{\text{base}}) = 446.7 \text{kN/m} \]

Distance to reaction;
\[x = (M_{\text{total}} + M_{\text{prop}}) / F_{\text{total v}} = 2250 \text{mm} \]

Eccentricity of reaction;
\[e = x - t_{\text{base}} / 2 = 0 \text{mm} \]

Loaded length of base;
\[l_{\text{load}} = t_{\text{base}} = 4500 \text{mm} \]

Bearing pressure at toe;
\[q_{\text{toe}} = F_{\text{total v}} / l_{\text{base}} = 134.5 \text{kN/m}^2 \]

Bearing pressure at heel;
\[q_{\text{heel}} = F_{\text{total v}} / l_{\text{base}} = 134.5 \text{kN/m}^2 \]

Effective overburden pressure;
\[q = (t_{\text{base}} + d_{\text{cover}}) \times \gamma_{\text{mb}} - (t_{\text{base}} + d_{\text{cover}} + h_{\text{water}}) \times \gamma_w = 6.7 \text{kN/m}^2 \]

Design effective overburden pressure;
\[q' = q / \gamma_{\text{mb}} = 6.7 \text{kN/m}^2 \]

Bearing resistance factors;
\[N_q = \exp(\pi \times \tan(\phi_{b.d})) \times (\tan(45 \text{deg} + \phi'_{d, b}) / 2))^2 = 3.784 \]

\[N_c = (N_q - 1) \times \cot(\phi_{b.d}) = 10.711 \]
\[N_l = 2 \times (N_q - 1) \times \tan(\phi_{b.d}) = 1.447 \]

Foundation shape factors;
\[s_q = 1 \]
\[s_l = 1 \]
\[s_c = 1 \]

Load inclination factors;
\[H = F_{\text{total h}} - F_{\text{prop stem}} - F_{\text{friction}} = 0 \text{kN/m} \]
\[V = F_{\text{total v}} = 605.2 \text{kN/m} \]
\[m = 2 \]
\[i_q = [1 - H / (V + l_{\text{load}} \times c_{b.d} \times \cot(\phi_{b.d}))]^{m} = 1 \]
\[i_l = [1 - H / (V + l_{\text{load}} \times c_{b.d} \times \cot(\phi_{b.d}))]^{m + 1} = 1 \]
\[i_c = i_q - (1 - i_q) / (N_c \times \tan(\phi_{b.d})) = 1 \]

Net ultimate bearing capacity;
\[n_i = c_{b.d} \times N_c \times s_c \times i_c + q' \times N_q \times s_q \times i_q + 0.5 \times (\gamma_{\text{mb}} \times \gamma_w) \times l_{\text{load}} \times N_l \times s_l \times i_l = 266.3 \text{kN/m}^2 \]

Factor of safety;
\[\text{FoS}_{\text{max}} = n_i / \max(q_{\text{toe}}, q_{\text{heel}}) = 1.98 \]

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
RETAILING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class; C30/37
Characteristic compressive cylinder strength; $f_{ck} = 30 \text{ N/mm}^2$
Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$
Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$
Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$
5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
Secant modulus of elasticity of concrete; $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm}/10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$

Partial factor for concrete - Table 2.1N; $\gamma_C = 1.50$
Compressive strength coefficient - cl.3.1.6(1); $\alpha_{cc} = 1.00$
Design compressive concrete strength - exp.3.15; $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 20.0 \text{ N/mm}^2$
Maximum aggregate size; $h_{agg} = 20 \text{ mm}$

Reinforcement details

Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$
Modulus of elasticity of reinforcement; $E_s = 210000 \text{ N/mm}^2$
Partial factor for reinforcing steel - Table 2.1N; $\gamma_S = 1.15$
Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Cover to reinforcement

Front face of stem; $c_{sf} = 40 \text{ mm}$
Rear face of stem; $c_{sr} = 50 \text{ mm}$
Top face of base; $c_{bt} = 50 \text{ mm}$
Bottom face of base; $c_{bb} = 75 \text{ mm}$

Check stem design for maximum moment

Depth of section; $h = 500 \text{ mm}$

Rectangular section in flexure - Section 6.1

Design bending moment; $M = 94.6 \text{ kNm/m}$
Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr} / 2 = 442 \text{ mm}$
$K = M / (d^2 \times f_{ck}) = 0.016$
$K' = 0.196$

$K' > K$ - No compression reinforcement is required

Lever arm; $z = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 420 \text{ mm}$
Depth of neutral axis; $x = 2.5 \times (d - z) = 55 \text{ mm}$
Area of tension reinforcement required; $A_{sr,req} = M / (f_{yd} \times z) = 518 \text{ mm}^2$/m
Tension reinforcement provided; 16 dia.bars @ 200 c/c
Area of tension reinforcement provided; $A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2$/m
Minimum area of reinforcement - exp.9.1N; \[A_{sr,\text{min}} = \max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 666 \text{ mm}^2/m \]

Maximum area of reinforcement - cl.9.2.1.1(3); \[A_{sr,\text{max}} = 0.04 \times h = 20000 \text{ mm}^2/m \]

\[\max(A_{sr,\text{req}}, A_{sr,\text{min}}) / A_{sr,\text{prov}} = 0.662 \]

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Limiting crack width; \[w_{max} = 0.3 \text{ mm} \]

Variable load factor - EN1990 – Table A1.1; \[\psi_2 = 0.3 \]

Serviceability bending moment; \[M_{sds} = 44.8 \text{ kNm/m} \]

Tensile stress in reinforcement; \[\sigma_s = M_{sds} / (A_{sr,\text{prov}} \times z) = 106.2 \text{ N/mm}^2 \]

Load duration; Long term \[k_t = 0.4 \]

Effective area of concrete in tension; \[A_{c,\text{eff}} = \min(2.5 \times (h - d), (h - x) / 3, h / 2) = 145000 \text{ mm}^2/m \]

Mean value of concrete tensile strength; \[f_{ct,\text{eff}} = f_{ctm} = 2.9 \text{ N/mm}^2 \]

Reinforcement ratio; \[\rho_{p,\text{eff}} = A_{sr,\text{prov}} / A_{c,\text{eff}} = 0.007 \]

Modular ratio; \[\alpha_e = E_s / E_{cm} = 6.395 \]

Bond property coefficient; \[k_1 = 0.8 \]

Strain distribution coefficient; \[k_2 = 0.5 \]

\[k_3 = 3.4 \]

\[k_4 = 0.425 \]

Maximum crack spacing - exp.7.11; \[s_{r,max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \psi_{sr} / \rho_{p,\text{eff}} = 562 \text{ mm} \]

Maximum crack width - exp.7.8; \[w_k = s_{r,max} \times \max(\sigma_s - k_t \times f_{ct,\text{eff}} / \rho_{p,\text{eff}}) \times (1 + \alpha_e \times \rho_{p,\text{eff}}), 0.6 \times \sigma_s) / E_s \]

\[w_k = 0.171 \text{ mm} \]

\[w_k / w_{max} = 0.569 \]

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force; \[V = 151.5 \text{ kN/m} \]

\[C_{Rd.c} = 0.18 / \gamma_C = 0.120 \]

Longitudinal reinforcement ratio; \[\rho_l = \min(A_{sr,prov} / d, 0.02) = 0.002 \]

\[v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times k^{3/2} \times f_{ct}^{0.5} = 0.415 \text{ N/mm}^2 \]

Design shear resistance - exp.6.2a & 6.2b; \[V_{Rd,c} = \max(C_{Rd,c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ct})^{1/3}) \]

\[V_{Rd,c} = 183.3 \text{ kN/m} \]

\[V / V_{Rd,c} = 0.827 \]

PASS - Design shear resistance exceeds design shear force

Rectangular section in flexure - Section 6.1

Design bending moment; \[M = 63.7 \text{ kNm/m} \]
Project
Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009)

Section
Civil & Geotechnical Engineering

Job Ref.

Sheet no./rev.
1

Calc. by
Dr. C. Sachpazis

Date
23/05/2013

Chk’d by
-

Date
-

App’d by
-

Date
-

Depth to tension reinforcement;

\[d = h - c_{sf} - \phi_{sf} / 2 = 440 \text{ mm} \]

\[K = M / (d^2 \times f_{ck}) = 0.011 \]

\[K’ = 0.196 \]

\[K’ > K - \text{No compression reinforcement is required} \]

Lever arm;

\[z = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 418 \text{ mm} \]

Depth of neutral axis;

\[x = 2.5 \times (d - z) = 55 \text{ mm} \]

Area of tension reinforcement required;

\[A_{sf,req} = M / (f_{yd} \times z) = 351 \text{ mm}^2/m \]

Tension reinforcement provided;

16 dia. bars @ 200 c/c

Area of tension reinforcement provided;

\[A_{sf,prov} = \pi \times \phi_{sf}^2 / (4 \times s_{sf}) = 1005 \text{ mm}^2/m \]

Minimum area of reinforcement - exp.9.1N;

\[A_{sf,min} = \max(0.26 \times f_{dcm} / f_{yk}, 0.0013) \times d = 663 \text{ mm}^2/m \]

Maximum area of reinforcement - cl.9.2.1.1(3);

\[A_{sf,max} = 0.04 \times h = 20000 \text{ mm}^2/m \]

\[\max(A_{sf,req}, A_{sf,min}) / A_{sf,prov} = 0.659 \]

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Limiting crack width

\[w_{\text{max}} = 0.3 \text{ mm} \]

Variable load factor - EN1990 – Table A1.1;

\[\nu_2 = 0.3 \]

Serviceability bending moment;

\[M_{ds} = 29.6 \text{ kNm/m} \]

Tensile stress in reinforcement;

\[\sigma_s = M_{ds} / (A_{sf,prov} \times z) = 70.4 \text{ N/mm}^2 \]

Load duration;

Long term

Load duration factor;

\[k_t = 0.4 \]

Effective area of concrete in tension;

\[A_{c,eef} = \min(2.5 \times (h - d), (h - x) / 3, h / 2) = 148333 \text{ mm}^2/m \]

Mean value of concrete tensile strength;

\[f_{ct,eef} = f_{dcm} = 2.9 \text{ N/mm}^2 \]

Reinforcement ratio;

\[\rho_{p,eef} = A_{sf,prov} / A_{c,eef} = 0.007 \]

Modular ratio;

\[\alpha_e = E_s / E_{cm} = 6.395 \]

Bond property coefficient;

\[k_1 = 0.8 \]

Strain distribution coefficient;

\[k_2 = 0.5 \]

\[k_3 = 3.4 \]

\[k_4 = 0.425 \]

Maximum crack spacing - exp.7.11;

\[s_{r,max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sf} / \rho_{p,eef} = 537 \text{ mm} \]

Maximum crack width - exp.7.8;

\[w_k = s_{r,max} \times \max(\sigma_s - k_t \times (f_{ct,eef} / \rho_{p,eef}) \times (1 + \alpha_e \times \rho_{p,eef}), 0.6 \times \sigma_s) / E_s \]

\[w_k = 0.108 \text{ mm} \]

\[w_k / w_{\text{max}} = 0.36 \]

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force;

\[V = 151.5 \text{ kNm} \]

\[C_{Rd,c} = 0.16 / \gamma_C = 0.120 \]

\[k = \min(1 + \sqrt{(200 \text{ mm} / d)}, 2) = 1.674 \]
Longitudinal reinforcement ratio; \[\rho_l = \min(A_{sf,prov} / d, 0.02) = 0.002 \]

Design shear resistance - exp.6.2a & 6.2b;
\[V_{Rd,c} = \max(C_{Rd,c} \times k \times (100 N/mm^2 \times \rho_l \times f_{ck})^{1/3}, V_{min}) \times d \]
\[V_{Rd,c} = 182.7 \text{kN/m} \]
\[V / V_{Rd,c} = 0.829 \]

PASS - Design shear resistance exceeds design shear force

Horizontal reinforcement parallel to face of stem - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1);
\[A_{sx,req} = \max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 500 \text{mm}^2/\text{m} \]

Maximum spacing of reinforcement – cl.9.6.3(2);
\[s_{sx,\text{max}} = 400 \text{mm} \]

Maximum area of reinforcement - cl.9.2.1.1(3);
\[A_{bb,\text{max}} = 0.04 \times h = 20000 \text{mm}^2/\text{m} \]

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design
Depth of section;
\[h = 500 \text{mm} \]

Rectangular section in flexure - Section 6.1
Design bending moment at toe;
\[M = 72 \text{kNm/m} \]

Depth to tension reinforcement;
\[d = h - c_{bb} - \phi_{bb} / 2 = 417 \text{mm} \]
\[K = M / (d^2 \times f_{ck}) = 0.014 \]
\[K' = 0.196 \]

K' > K - No compression reinforcement is required

Lever arm;
\[z = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 396 \text{mm} \]

Depth of neutral axis;
\[x = 2.5 \times (d - z) = 52 \text{mm} \]

Area of tension reinforcement required;
\[A_{bb,req} = M / (f_{yd} \times z) = 418 \text{mm}^2/\text{m} \]

Tension reinforcement provided;
\[16 \text{dia.bars} @ 200 \text{c/c} \]

Area of tension reinforcement provided;
\[A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 1005 \text{mm}^2/\text{m} \]

Minimum area of reinforcement - exp.9.1N;
\[A_{bb,\text{min}} = \max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 628 \]

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3
Limiting crack width;
\[w_{max} = 0.3 \text{mm} \]

Tensile stress in reinforcement;
\[\sigma_s = M_{bs} / (A_{bb,prov} \times z) = 100 \text{N/mm}^2 \]

Load duration;
\[k_t = 0.4 \]
Effective area of concrete in tension; $A_{c.eff} = \min(2.5 \times (h - d), (h - x) / 3, h / 2) = 149292$ mm2/m

Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9$ N/mm2

Reinforcement ratio; $\rho_p.eff = A_{bb.prov} / A_{c.eff} = 0.007$

Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$

Bond property coefficient; $k_1 = 0.8$

Strain distribution coefficient; $k_2 = 0.5$

$k_3 = 3.4$

$k_4 = 0.425$

Maximum crack spacing - exp.7.11; $s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p.eff} = 659$ mm

Maximum crack width - exp.7.8; $w_k = s_{r.max} \times \max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$

$w_k = 0.188$ mm

$w_k / w_{max} = 0.628$

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force; $V = 144$ kN/m

$C_{Rd.c} = 0.18 / \gamma_C = 0.120$

$K = \min(1 + \sqrt{(200 \text{ mm} / d)}, 2) = 1.693$

Longitudinal reinforcement ratio; $\rho_l = \min(A_{bb.prov} / d, 0.02) = 0.002$

$V_{min} = 0.035 \text{ N/mm}^2 \times d^{0.5} \times f_{ck}^{0.5} = 0.422 \text{ N/mm}^2$

Design shear resistance - exp.6.2a & 6.2b; $V_{Rd.c} = \max(C_{Rd.c} \times k \times (100 \text{ N/mm}^2 \times \rho_l \times f_{ck})^{1/3}, v_{min}) \times d$

$V_{Rd.c} = 176$ kN/m

$V / V_{Rd.c} = 0.818$

PASS - Design shear resistance exceeds design shear force

Rectangular section in flexure - Section 6.1

Design bending moment at heel; $M = 186.4$ kNm/m

Depth to tension reinforcement; $d = h - c_{bt} - \phi_{bt} / 2 = 442$ mm

$K = M / (d^2 \times f_{ck}) = 0.032$

$K' = 0.196$

$K' > K$ - No compression reinforcement is required

Lever arm; $z = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 420$ mm

Depth of neutral axis; $x = 2.5 \times (d - z) = 55$ mm

Area of tension reinforcement required; $A_{bt.req} = M / (f_{yd} \times z) = 1021 \text{ mm}^2$/m

Tension reinforcement provided; 16 dia.bars @ 175 c/c

Area of tension reinforcement provided; $A_{bt.prov} = \pi \times \phi_{bt}^2 / (4 \times S_{bt}) = 1149 \text{ mm}^2$/m

Minimum area of reinforcement - exp.9.1N; $A_{bt.min} = \max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 666$

Maximum area of reinforcement - cl.9.2.1.1(3); $A_{bt.max} = 0.04 \times h = 20000 \text{ mm}^2$/m
max(A_{bt,req}, A_{bt,min}) / A_{bt,prov} = 0.888

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Limiting crack width; \(w_{\text{max}} = 0.3 \) mm

Variable load factor - EN1990 – Table A.1.1; \(\gamma_2 = 0.3 \)

Serviceability bending moment; \(M_{\text{bds}} = 81.2 \) kNm/m

Tensile stress in reinforcement; \(\sigma_s = M_{\text{bds}} / (A_{\text{bt,prov}} \times z) = 168.2 \) N/mm²

Load duration; Long term

Load duration factor; \(k_t = 0.4 \)

Effective area of concrete in tension; \(A_{\text{c,eff}} = \min(2.5 \times (h - d), (h - x) / 3, h / 2) = 145000 \) mm²/m

Mean value of concrete tensile strength; \(f_{\text{ct,eff}} = f_{\text{ctm}} = 2.9 \) N/mm²

Reinforcement ratio; \(\rho_{\text{p,eff}} = A_{\text{bt,prov}} / A_{\text{c,eff}} = 0.008 \)

Modular ratio; \(\alpha_e = E_s / E_{\text{cm}} = 6.395 \)

Bond property coefficient; \(k_1 = 0.8 \)

Strain distribution coefficient; \(k_2 = 0.5 \)

Maximum crack spacing - exp.7.11; \(s_{r,\text{max}} = k_3 \times c_{\text{bt}} + k_1 \times k_2 \times k_4 \times \phi_{\text{bt}} / \rho_{\text{p,eff}} = 513 \) mm

Maximum crack width - exp.7.8; \(w_k = s_{r,\text{max}} \times \max(\sigma_s - k_3 \times (f_{\text{ct,eff}} / \rho_{\text{p,eff}}) \times (1 + \alpha_e \times \rho_{\text{p,eff}}), 0.6 \times \sigma_s) / E_s \)

\(w_k = 0.247 \) mm

\(w_k / w_{\text{max}} = 0.822 \)

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force; \(V = 129.3 \) kN/m

\(C_{\text{Rd,c}} = 0.18 / \gamma_c = 0.120 \)

Longitudinal reinforcement ratio; \(\rho_l = \min(A_{\text{bt,prov}} / d, 0.02) = 0.003 \)

Minimum shear stress; \(\nu_{\min} = 0.035 \) N²/mm⁴ \times k²/3 \times f_{\text{ck}}^0.5 = 0.415 N/mm²

Design shear resistance - exp.6.2a & 6.2b; \(V_{\text{Rd,c}} = \max(C_{\text{Rd,c}} \times k \times (100 N²/mm⁴ \times \rho_l \times f_{\text{ck}})^{1/3}, \nu_{\min}) \times d \)

\(V_{\text{Rd,c}} = 183.3 \) kN/m

\(V / V_{\text{Rd,c}} = 0.705 \)

PASS - Design shear resistance exceeds design shear force

Secondary transverse reinforcement to base - Section 9.3

Minimum area of reinforcement – cl.9.3.1.1(2); \(A_{\text{bx,req}} = 0.2 \times A_{\text{bt,prov}} = 230 \) mm²/m

Maximum spacing of reinforcement – cl.9.3.1.1(3); \(s_{\text{bx, max}} = 450 \) mm

Transverse reinforcement provided; 8 dia.bars @ 200 c/c

Area of transverse reinforcement provided; \(A_{\text{bx,prov}} = \pi \times \phi_{\text{bx}}^2 / (4 \times s_{\text{bx}}) = 251 \) mm²/m

PASS - Area of reinforcement provided is greater than area of reinforcement required
Check key design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of section</td>
<td>350 mm</td>
</tr>
</tbody>
</table>

Rectangular section in flexure - Section 6.1

- Design bending moment at key: \(M = 1.3 \text{ kNm/m} \)
- Depth to tension reinforcement: \(d = h - c_{bb} - \phi_k / 2 = 269 \text{ mm} \)
- \(K = M / (d^2 \times f_{ck}) = 0.001 \)
- \(K' = 0.196 \)

K' > K - No compression reinforcement is required

- Lever arm: \(z = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 256 \text{ mm} \)
- Depth of neutral axis: \(x = 2.5 \times (d - z) = 34 \text{ mm} \)
- Area of tension reinforcement required: \(A_{k,req} = M / (f_{yd} \times z) = 12 \text{ mm}^2/m \)
- Tension reinforcement provided: 12 dia. bars @ 200 c/c
- Area of tension reinforcement provided: \(A_{k,prov} = \pi \times \phi_k^2 / (4 \times s_k) = 565 \text{ mm}^2/m \)
- Minimum area of reinforcement - exp.9.1N; \(A_{k,min} = \max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 405 \text{ mm}^2/m \)
- Maximum area of reinforcement - cl.9.2.1.1(3); \(A_{k,max} = 0.04 \times h = 14000 \text{ mm}^2/m \)
- \(\max(A_{k,req}, A_{k,min}) / A_{k,prov} = 0.716 \)

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

- Limiting crack width: \(w_{\text{max}} = 0.3 \text{ mm} \)
- Variable load factor - EN1990 – Table A1.1; \(\psi_2 = 0.3 \)
- Serviceability bending moment; \(M_{\text{sys}} = 3.3 \text{ kNm/m} \)
- Tensile stress in reinforcement; \(\sigma_s = M_{\text{sys}} / (A_{k,prov} \times z) = 23 \text{ N/mm}^2 \)
- Load duration; Long term
- Load duration factor; \(k_t = 0.4 \)
- Effective area of concrete in tension; \(A_{c,eff} = \min(2.5 \times (h - d), (h - x) / 3, h / 2) = 105458 \text{ mm}^2 \)
- Mean value of concrete tensile strength: \(f_{ct,eff} = f_{ctm} = 2.9 \text{ N/mm}^2 \)
- Reinforcement ratio; \(\rho_{p,eff} = A_{k,prov} / A_{c,eff} = 0.005 \)
- Modular ratio; \(\alpha_e = E_s / E_{ctm} = 6.395 \)
- Bond property coefficient; \(k_1 = 0.8 \)
- Strain distribution coefficient; \(k_2 = 0.5 \)
- \(k_3 = 3.4 \)
- \(k_4 = 0.425 \)
- Maximum crack spacing - exp.7.11; \(s_{r,max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_k / \rho_{p,eff} = 635 \text{ mm} \)
- Maximum crack width - exp.7.8; \(w_k = s_{r,max} \times \max(\sigma_s - k_1 \times (f_{ct,eff} / \rho_{p,eff}) \times (1 + \alpha_e \times \rho_{p,eff}), 0.6 \times \sigma_s) / E_s \)
- \(w_k = 0.042 \text{ mm} \)
- \(w_k / w_{\text{max}} = 0.139 \)

PASS - Maximum crack width is less than limiting crack width
Project
Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009)

Section
Civil & Geotechnical Engineering

Calc. by
Dr. C. Sachpazis

Date
23/05/2013

Job Ref.

Rectangular section in shear - Section 6.2

Design shear force;

\[V = 4 \text{kN/m} \]

\[C_{Rd.c} = 0.18 / \gamma_c = 0.120 \]

\[k = \min(1 + \sqrt{200 \text{ mm} / d}), 2) = 1.862 \]

Longitudinal reinforcement ratio;

\[\rho_l = \min(A_{k,prov} / d, 0.02) = 0.002 \]

\[v_{\text{min}} = 0.035 \text{ N}^{1/2}/\text{mm} \times k^{3/2} \times f_{ck}^{0.5} = 0.487 \text{ N/mm}^2 \]

Design shear resistance - exp.6.2a & 6.2b;

\[V_{Rd.c} = \max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3} \]

\[V_{Rd.c} = 131.1 \text{kN/m} \]

\[V / V_{Rd.c} = 0.030 \]

PASS - Design shear resistance exceeds design shear force
Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009)

Project

Calc. by: Dr. C. Sachpazis
Date: 23/05/2013

16 dia. bars @ 200 c/c
horizonal reinforcement
parallel to face of stem

12 dia. bars @ 200 c/c
transverse reinforcement
in base

16 dia. bars @ 175 c/c

12 dia. bars @ 200 c/c